1. Si considerino due partite di calcio. I risultati possibili per ognuna di esse sono 1,X,2. Assumendo indipendenza e distribuzioni marginali \(\{0.3, 0.4, 0.3\}, \{0.7, 0.2, 0.1\}\), calcolare
 (a) La probabilità che nessuna delle partite risulti in parità;
 (b) La probabilità che almeno un partita risulti annullata;
 (c) La probabilità che la prima partita sia finita in parità una volta che ci è stato comunicato che la squadra di casa non ha vinto.

2. Due fabbriche A e B producono telefonini. Fabbrica A fornisce il 65% del mercato e produce mediamente un 15% di telefonini difettosi. Fabbrica B fornisce il resto ed è invece più affidabile con solo il 10% di telefonini difettosi.
 (a) Calcolare la probabilità che un telefono acquistato sia difettoso;
 (b) Calcolare la probabilità che da un lotto di 23 telefoni ce ne sia almeno due difettosi;
 (c) Calcolare la probabilità che un telefono non difettoso provenga dalla Fabbrica B.

3. Data la sorgente \(A = \{a_1, a_2, a_3, a_4, a_5, a_6\}\),
 \[P = \{0.01, 0.02, 0.1, 0.02, 0.32, 0.53\}\] e i tre alfabeti di codice:
 \[B_1 = \{0, 10, 011, 111, 1010, 1111\}\]
 \[B_2 = \{011, 0111, 01111, 011111, 0111111\}\]
 \[B_3 = \{00, 01, 10, 1101, 11101, 11010\}\]
 (a) Determinare per ogni codice se esso è univocamente decodificabile e spiegare perché;
 (b) Valutare l'efficienza dei codici univocamente decodificabili;
 (c) Proporre un codice più efficiente.

4. In una comunicazione con codice Morse (punto, linea, spazio), linea e punto possono entrambi confondersi con lo spazio, e viceversa, con probabilità pari a 0.05. Il punto può essere confuso con la linea con probabilità 0.03 e la linea può essere confusa con il punto con probabilità 0.01. Si supponga che punto e linea si presentino con probabilità 0.45 e lo spazio con probabilità 0.1.
 (a) Valutare la probabilità che in una sequenza ricevuta di 3 caratteri ci sia almeno un errore;
 (b) Valutare in una lunga sequenza quante spazi sono mediamente errati.
(a) \(A \in \{1, x, 2\} \quad B \in \{1, x, 2\} \)

\[P_A = \{0.3, 0.4, 0.3\} \quad P_B = \{0.7, 0.2, 0.1\} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Pr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>0.06</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.03</td>
</tr>
<tr>
<td>x</td>
<td>1</td>
<td>0.28</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>0.08</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.21</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>0.06</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.03</td>
</tr>
</tbody>
</table>

(b) \(\Pr \{\text{unless one pallet} \neq \text{smallest} \} = 0 \)

A = smallest \(= \phi \) unless violet
B = smallest \(= \phi \)

(c) \(\Pr \{A=x \mid A \neq 1\} = \frac{\Pr \{A=x, A \neq 1\}}{\Pr \{A \neq 1\}} = \frac{\Pr \{A=x\}}{1 - \Pr \{A=1\}} = \frac{0.4}{0.7} = \frac{4}{7} \)
\(P(A) = 0.65 \)
\(P(B) = 0.35 \)
\(P(D|A) = 0.15 \)
\(P(D|B) = 0.10 \)
\(P(D) = 0.35 \)

(a) \(P_2(D) = P_2(D|A)P(A) + P_2(D|B)P_2(B) \)
\[= 0.15 \times 0.65 + 0.10 \times 0.35 = 0.1325 = P_0 \]

(b) \(P_2 \{ \text{in un lotto di 23 telefoni ce ne manca almeno una doppia difettoi} \} \)
\[= P_2 \{ 2 \text{ doppie difettri in 23} \} + P_2 \{ 3 \text{ doppie difettri in 23} \} + \ldots + P_2 \{ 23 \text{ doppie difettri in 23} \} \]
\[= 1 - \left(P_2 \{ \text{nessuna doppia difetta in 23} \} + P_2 \{ 1 \text{ doppia difetta in 23} \} \right) \]
\[= 1 - \left[\binom{23}{0} P_0^0 (1-P_0)^{23} + \binom{23}{1} P_0^1 (1-P_0)^{22} \right] \]
\[= 1 - (1-P_0)^{23} = 23 \cdot P_0 (1-P_0)^{22} \]
\[= 0.8283 \]

(c) \(P_2 \{ B|D \} = \frac{P_2(B|D)P(B)}{P(B)} = \frac{(1-P(D|B))P(B)}{1-P(D)} \)
\[= \frac{0.9 \times 0.35}{0.8675} = 0.3631 \]
\(M = \{ a_1, a_2, a_3, a_4, a_5, a_6 \} \)

\(\Pi = \{ 0.01, 0.02, 0.1, 0.02, 0.32, 0.53 \} \)

\(H(\Pi) = 1.6358 \text{ bit} \)

(a) \(B_1 = \{0, 10, 011, 1101, 11101, 1111101\} \)

\[\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} = 1.1250 > 1 \]

non puoi essere un codice O.S.

\(B_2 = \{011, 0111, 101, 111101, 11111011, 01111111\} \)

\(Y_2 = \{3, 3, 4, 5, 6, 7, 8\} \)

\[\frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^7} + \frac{1}{2^8} < 1 \]

codice non è preferito.

\(B_3 = \{00, 01, 10, 1101, 11101, 11010\} \)

\(Y_3 = \{2, 2, 2, 5, 5, 5\} \)

\[\frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^5} + \frac{1}{2^6} + \frac{1}{2^6} = 0.4431 < 1 \]

lunghezza non è la stessa O.S.
\[L_3 = 4.61 \text{ h.t.} \]

\[\mu_3 = \frac{\lambda(\pi)}{L_3} = 0.3544 \]

(C)

\[
\begin{array}{c|c|c}
1 & a_6 & 0.53 \\
0 & a_5 & 0.32 \\
0 & a_3 & 0.1 \\
0 & a_4 & 0.02 \\
00 & a_2 & 0.02 \\
00 & a_1 & 0.01 \\
\end{array}
\]

\[B_4 = \{ 00010, 00011, 001, 0000, 01, 1 \} \]

\[\mathcal{Y}_4 = \{ 5, 5, 3, 4, 2, 1 \} \]

\[L_4 = 1.7000 \text{ h.t.} \]

\[\mu_4 = \frac{\lambda(\pi)}{L_4} = 0.9623 \]
(4) \[X = \{ \text{Punto, linea, spazio} \} \]
\[Y = \{ \text{Punto, linea, spazio} \} \]

\[P \quad L \quad S \]
\[\begin{bmatrix} P & 0.92 & 0.03 & 0.05 \\ L & 0.01 & 0.34 & 0.05 \\ S & 0.05 & 0.05 & 0.9 \end{bmatrix} \]

\[\mathbf{P}_e \]

\[P_x = \{ 0.45, 0.45, 0.1 \} \]

\[P_{\text{in}x} = \mathbf{1} - \mathbf{P}_e = \mathbf{1} - \text{diag} \left(\mathbf{P}_e \right) \]

\[P_{\text{in}x} = \mathbf{1} - 0.92 \mathbf{1} = 0.073 \]

\[P_{\text{in}x} = \mathbf{1} - (1 - \mathbf{P}_e)^2 = 0.2034 \]

(5) \[P_{\text{in}x} \{ \text{escluso} } = P_2 \{ Y = L \} + P_2 \{ Y = P \} \{ x \} = 0.05 + 0.05 = 0.1 \]

10% di massime esclusa.